Geopressures and Hydrocarbon Generation
and Migration Onshore Taranaki

The onshore Taranaki oil and gas fields have been sourced from Paleocene to Eocene fluvio-deltaic coal
measure sequences of the Mangahewa and Kaimiro formations. The source sequences lie within
regionally continuous, stacked overpressured cells. Migration of the hydrocarbons into stratigraphically-
equivalent, and younger, reservoirs is likely to be controlled largely by pressure gradients and episodic
breakout along major faults. Definition of the pressure seal using petrophysical data provides a possible
predictive technique for determining the likely stratigraphic and areal distribution of oil and gas.

This article has been prepared by Mark Webster of Fletcher Challenge Petroleum Inc. and Stephen Adams
of Petrophysical Solutionz Ltd and was presented at the 1996 New Zealand Petroleum Conference.

Introduction

Taranaki crude oils are low sulphur, high wax, 35-44%2API
gravity oils characterised by high pour points (15-36%2C).
Numerous geochemical studies (Thompson 1982, Czochanska
etal 1988, Johnstonetal 1988, 1990, 1991, Cook 1988, Collier
& Johnston 1991, Killops et al 1994 amongst others) have
established a correlation between the oils and condensates
found in the basin and the coal measures of the Kapuni and
Pakawau Groups. Notable exceptions are the oils and extracts
found in Kora and Tangaroa-1, which are interpreted to have
been sourced from a Paleocene marine shale, equivalent to the
Waipawa Shale in the East Coast Basin (Reed 1992, Murray
et al 1994, Killops et al 1994). Although it has been well
established that most Taranaki oils are sourced from coals and
non-marine shales, there is still some unéertainty about the
level of thermal maturity required for generation and expulsion
of hydrocarbons from these sediments.

Waihapa-1, and subsequent sidetracks -1A and -1B,
penetrated the thickest Mangahewa Formation coal measure
sequence encountered onshore to date and therefore provide
an optimum intersection to analyse the potential yield of
shales and coals within the Kapuni Group and the level of
maturity required for generation and expulsion. The source
units lie within an overpressured compartment that extends
throughout much of the Eastern Mobile Belt of Taranaki
Basin. This paper presents geochemical data from Waihapa-1
(Figure 1) and an assessment of the likely causes of
overpressuring and the role that geopressures play in
hydrocarbon generation and migration.

Waihapa-1 was drilled in 1985 to test the Kapuni Group
sandstones within an overthrust structure at the southern end
of the Tarata Thrust Belt (Lock et al 1986). As a result of
drilling problems the well was abandoned at 4477 m and
sidetracked from 4294 m (Figure 2). The sidetrack, Waihapa-1A,
encountered gas-bearing sands below 4890 m which were
tentatively identified as Kaimiro Formation on the basis of a
lithostratigraphic correlation with offset wells. These sands
were tested in an open-hole DST at rates of up to 4 MMSCFD.
The test string became stuck during the test and a second
sidetrack, Waihapa-1B, was drilled from 4819 m to a depth of
5087 m. This well failed to flow hydrocarbons from the
Kaimiro Formation in a cased hole test and the well was

suspended until 1988, when the Tikorangi Limestone was
tested and the Waihapa oil field discovered. The Waihapa
wells penetrated approximately 195 m of coal and 380 m of
carbonaceous shale within the Kapuni Group.

Source Quality and Facies

Geochemical analyses were performed on a suite of cuttings
samples from Waihapa-1, -1A, and -1B, and a sample of oil
from the overlying Tikorangi Limestone reservoir in the
Waihapa Field. Twenty nine cuttings samples from between
4030 m and 5085 m were selected from Waihapa-1,-1A and
-1B. The cuttings samples were hand-picked to differentiate
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Figure 1: Location map onshore Taranaki Basin fields and
structural elements.
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Figure 2: Waihapa-1, -1A, -1B well summaries.

coal and shale lithologies and screened using TOC andRock-eval
pyrolysis; results are summarised as Figure 3. Based on the
pyrolysis results, selected samples were submitted for solvent
extraction and chromatography, pyrolysis-GC and GC-MS
analyses.

The geochemical screening data indicate that the coals are
richer in TOC (29-88%) and have higher hydrocarbon
generating potential (ST + S2 = 84-259 mg/g) than the shales
(TOC =4-31% and S1 + 82 = 10-88 mg/g). Extraction data
confirm these conclusions; the coals have EOM values of
9444-25000 ppm and total hydrocarbon extracts of 3600-
7000 ppm, compared to shale values of 3450-20 100 ppm and
1400-6800 ppm respectively.
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The coals and shales plot in a similar position on a
modified van Krevelen diagram (Figure 4), with the coals
being apparently more oil-prone (HI = 229-348) than the
shales (HI = 189-312). High saturates contents (978-4308 ppm
in coals and 1072-3956 ppm in shales) indicate excellent
liquids potential for both lithologies (Figure 5). This is
confirmed by pyrolysis gas-chromatography data which
indicate that between 6 and 15% of the hydrocarbon generating
potential in the coals consist of CIS—C31 alkanes and alkenes,
and that these compounds constitute 6-8% of the S2 peak in
shales; a cutoff of 5% is generally used to discriminate liquids
prone source rocks (Geotech pers comm.)

The kerogens comprise predominantly vitrinite in both
coals (87-96%) and shales ( 89-97.5%). Liptinite comprises
3_89% of the coals and 2-6% of shales. The vitrinite comprises
detrovitrinite (70-90% of vitrinite in coals and 60-90% in
shales) and telovitrinite. Detrovitrinite and telovitrinite are
derived from humus but contain higher plant as well as
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Figure 3: Composite geochemical log, Waihapa-1, -1A, -1B showing source richness parameters.

bacterial and fungal lipids. It is likely that the liptinite,
detrovitrinite and telovitrinite all contribute to the high liquids
potential of the sediments.

Pristane/phytane ratios of 4.5-14 in the source rocks
indicate an oxidising environment of deposition and show a
general increasing trend upsection, indicating increasingly
oxic peat-swamp conditions (Figure 6). Waihapa crude has a
Pr/Ph ratio = 8.13, consistent with an oxidising source

environment. There is a strong correlation in sterane and
triterpane biomarker distributions between the Mangahewa
Formation samples and the oil found in the shallower Tikorangi
reservoir. Both show a predominance of C,, steranes over G,
steranes, confirming input from terrestrial higher plants.
Oleanane is also present in the sediments and in the oil,
reflecting input of higher plant matter in the form of angiosperm
debris.
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Figure 4: Modifiedvan Krevelen diagram, Waihapa-1,-1A,-1B.

The geochemical data from Waihapa-1 indicate that the oil in
the Tikorangi Formation was sourced from the coals and shales
of the Mangahewa Formation. The wet gas produced from the
sands in the Kaimiro formation in Waihapa-1A appears to
have been sourced from Paleocene non-marine sediments of
the Kaimiro/Farewell Formations (Killops et al 1994).

Maturity

Biomarker ratios, and particularly the ratios of the 20S to
20R isomer of the C, —C,, steranes and the 228 to 22R isomer
of the C,~C,; hopanes, are commonly used as maturity
indicators in oils and source rocks. These ratios are at, or close
to, equilibrium point for most Taranaki oils and condensates,
suggesting they were generated at similar levels of maturity
(Czochanska 1988), but are invariably lower in the source
rocks penetrated in wells. The same relationship is evident in
Waihapa, where the deepest sample analysed (5020 m) has a
C29 20S/20R ratio of 0.7, compared to 0.79 in the oil. This
disparity has led many previous authors (Cook 1988, Johnston
et al 1988, 1990, 1991, Collier & Johnston 1991) to conclude
that mature source rocks have not been penetrated in even the
deepest wells and that maturity levels of R =0.9%, equivalent
to maximum burial depths in excess of 6 km, are required for
expulsion of oil from the Kapuni Group coals.

Pyrolysis data from Waihapa indicate that the coals and
shales within the Mangahewa Formation contain high levels
of free hydrocarbons, with S1 ranges of 4-16 mg/g and 2-9
mg/g respectively. The GC traces of saturates fractions of coal
extracts (Figure 7) exhibitrapid and progressive maturity with
depth. The sample at 4030 m exhibits a Pr/nC , ratio of 6.27;
this decreases with depth and the sample at 4430 m = 1.49; this
trace is more characteristic of Waihapa crude (Figure 8) with
a heavy-end bias in the n-alkane distribution and a Pr/nC , ratio
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Figure 5: Composite geochemical log, Waihapa-1, -1A, -1B showing hydrocarbon type parameters.

of 1.08. The trace from 4995 m shows a light-end bias in the
n-alkane distribution, suggesting cracking of the longer chain
molecules, consistent with the wet gas tested in Waihapa-1A.
T, values in the Kapuni Group range from 423-449 2C.

Figure 9 illustrates the vitrinite reflectance profile for
Waihapa-1. An offsetis evident at the top Kapuni unconformity;
this is possibly due either to different kerogen macerals in the
non-marine and marine sequences, or a real offset in maturity
above and below the unconformity. R ranges from 0.56% at
the top of the Kapuni Group to 0.9% at 4995 m. The best
geochemical correlation with the Tikorangi oil, on the basis of
biomarker distributions and overall character, is with a coal at
4430 m, which has an R = 0.78%.

The data from Waihapa-1 suggest that maturity levels
equivalent to R =0.75-0.8% are sufficient for generation and
expulsion and that the onset of generation occurs rapidly. This
is in agreement with Killops et al (1994), who concluded that
expulsion from coals occurs at maturity levels of R = 0.8%.
Primary migration of oil from coals is likely to be aided by the
generation of large volumes of carbon dioxide (Killops et al
1994) and the development of extensive microfracture
networks, which develop preferentially in vitrinite-rich coals
(Paterson et al 1992).

The contrast in maturity from biomarker ratios could be due
to delayed sterane isomerisation in coals (Grantham 1986) or
fractionation as hydrocarbons are expelled from the source rock.
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Overpressures

Abnormally high formation pressures (overpressures) have
long been recognised in Taranaki Basin, principally because
they present a drilling hazard and are an important factor in
reservoir management in deeper producing fields. Little study
has been directed into the causes or distribution of the
overpressuring, or the potential implications for hydrocarbon
generation and migration.

Causes of Overpressuring

Abnormal overpressures develop in sedimentary basins
when fluid flow is inhibited or prevented, and are generally
considered to be caused by one or more of the following
phenomenon:

Disequilibrium compaction (or undercompaction): This
occurs in thick, rapidly deposited shale sequences where the
rate of porosity and permeability degradation related to
compaction exceeds the rate at which water can escape from
the shale, and is generally regarded as the principal cause of
overpressure in many basins (Gaarnenstroom et al 1993).

Kerogen transformation (hydrocarbon generation and
cracking of oil to gas): The process of hydrocarbon generation,
and the subsequent cracking of oil to gas, results in net fluid
volume increases that result in overpressuring in sealed
compartments (Martinsen 1994, Osborne & Swarbrick 1995).
Hydrocarbon generation alsoreduces the relative permeabilities
to water and to petroleum, thereby creating effective seals and
contributing to the development of overpressure (Chapman
1994, Iverson et al 1994, MacGowan et al 1994).

Clay dehydration: At a temperature of about 105 %2C,
smectite begins altering to illite and expels a large volume of
structural water in the process (Martinsen 1994). If the rock is
sealed, this volume increase, combined with the thermal
expansion of pore fluids, will result in increased formation
pressure. '

Aquathermal expansion: Water expands when heated and,
if prevented from escaping by a flow barrier, causes an
increase in pressure (Osborne & Swarbrick 1995). The volume
expansion involved in aquathermal pressuring is very small,
however, and this process is not considered a significant
overpressuring mechanism.

Tectonic forces: Tectonic compression can cause
overpressures by exerting horizontal stress on sediments where
fluid escape is inhibited, in the same way that rapid burial
imposes vertical stress. Tectonic uplift is another possible
mechanism by which overpressures can develop, if internal
pressures are preserved within the uplifted sequence. Tectonic
uplift is not regarded as a common mechanism for
overpressuring, as uplift and erosion removes the hydrostatic
and lithostatic load acting on a formation and also results in a
temperature, and hence pressure, decrease; tectonic uplift
more commonly results in underpressuring (Powley 1990).

Osmosis: The mass transfer of waters with different
salinities across a semi permeable membrane can cause
abnormally high pressures inisolated zones (Martinsen 1994),
although pressure differences across shale membranes are
likely to be small (Osborne & Swarbrick 1995).

Topographically induced: The hydraulic head resulting
from elevation of a water table in highland regions exerts a
pressure in the subsurface if the aquifer is overlain by a seal.
Such a process is apparent in the onshore Taranaki basin as a

18 Petroleum Exploration in New Zealand News Volume 47 ¢ August 1996



17
Pr

18

Ph

22

J| | IR

ALALALALALALILL

Figure 8: Waihapa Crude, C,, GLC saturates fraction.

0 -

1000

2000

W
o
o
o

Depth (MAHBKB)

TOP KAPUNI

4000 -

5000

6000 -

0.10 1.00

o Waihapa-1 = Waihapa-1A & Waihapa-1 B

Figure 9: Waihapa-1,-1A,-1B vitrinite reflectance data.

result of the groundwater flow patterns generated by Mt
Taranaki (Allis et al in press).

Disequilibrium compaction, kerogen transformation and
hydraulic head are generally considered the main causes of
overpressuring (Martinsen 1994, Osborne & Swarbrick 1995).
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Figure 10: Original formation pressures in selected Taranaki
Basin wells.

Distribution of Overpressures in Taranaki
Overpressures are most accurately defined by direct pressure
measurements in permeable units. Figure 10 shows original
reservoir pressures from RFT and DST data from a selection of
Taranaki Basin wells. A hydrostatic gradient of 0.437 psi/ft,
equivalent to a fluid with density of 8.4 ppg, and a lithostatic
gradient of 1 psi/ft are displayed for reference. All data are
referenced to a sea level datum. Several trends are evident: wells
on the Western Platform, including Maui Field, and in the
Southern Inversion Zone, all plot on a normal pressure gradient.

19



Three overpressure trends are evident for other wells in the
castern Mobile Belt: the first is a relatively small degree of
overpressure in shallow reservoirs onshore, caused by topographic
effects (Allis et al in press) or, in some cases, depleted
overpressures. The second trend exhibits overpressures of up to
1100 psi relative to the hydrostatic gradient and includes deep
reservoirs at Kapuni, Kupe South, Kaimiro, the Mangahewa
Formation in McKee, Tariki sands in Tariki Field, Miocene sands
in Tipoka-1 and Eocene reservoirs in the North Taranaki Graben
at Okoki-T and Mokau-1. The third trend, with overpressures of
2200+ psi, has been encountered in Paleocene sands at Waihapa-
1A and Kaimiro-1 and offshore at Tangaroa-1 and Kora.

The top of overpressuring is not consistent with one
stratigraphic boundary or a consistent depth. Figure 11
illustrates the areal extent of the overpressured compartment.

Wireline logs can be used as indirect indicators of
overpressure. The most common methods used are shale
resistivity and transit time, plotted on log scales against depth.
Such a plot for Ahuroa-1 is shown as Figure 12, with only the
data for shale and silt intervals displayed. The plot indicates
that the onset of overpressuring occurs at ~2250 m, at the top
of the Otaraoa Formation.

The occurrence of overpressures is more clearly understood
if the data from each log type are used to estimate a shale porosity.
A normal compaction trend (Armstrong et al 1994) can then be
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Figure 12: Ahuroa-1 shale resistivity and sonic transit times.

fitted through the data to assist with determination of overpressured
formations. Figure 13 shows a plot of the data from Ahuroa-1
using this format. From the plot, it can be clearly seen that the
resistivity, sonic and density logs are consistent and confirm that
the onset of overpressuring occurs near 2250 m. The equivalent
depth method (Bigelow 1994a) can be used to quantify the
amount of overpressure from the difference in porosity between
the observed and normal porosity trends. Although overpressuring
isindicated by wireline log dataat Ahuroa, the measured formation
pressures are notas high asin the adjacent Tariki Field, suggesting
pressure has bled off from Ahuroa Field.

It is apparent that at least two stacked overpressured
compartments are present throughout the Eastern Mobile Belt,
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Figure 13: Ahuroa-1, shale porosity and overpressure detection
from wireline logs
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north of and including Kupe South. The overpressure cells
correlate with areas of hydrocarbon generation from either
Cretaceous and/or Paleocene to Eocene coal measures and, in the
North Taranaki Graben, a Paleocene marine shale. Hydrocarbon
generation and conversion of oil to gas are considered the likely
cause of the overpressure, although undercompaction resulting
from rapid Pliocene sedimentation may also be a contributing
factor in some areas of the basin. The hydraulic seals separating
pressure cells are most likely to develop with the onset of
hydrocarbon generation, when lithologies that were previously
permeable tosingle phase fluid flow (water) become impermeable
to dual phase fluid flow (water plus hydrocarbons), due torelative
permeability effects. Stacked cells would therefore be expected
in basins such as Taranaki where multiple, stacked source units
are present that have sequentially entered the generation window.
Recent tectonic uplift onshore Taranaki (Allis et al in press)
appears to have elevated the top of the upper overpressured cell
and in some areas, such as Tariki Field, allowed overpressures to
migrate up from the Kapuni Group, where they originated, into
shallower reservoirs.

Similar examples of regionally extensive and stacked
overpressure compartments have been documented in
numerous sedimentary basins worldwide (Bigelow 1994b,
Bradley & Powley 1994).

Role of geopressure in migration

As the mature source rocks lie within the overpressured
compartments in the Eastern Mobile Belt, migration of the
hydrocarbons into stratigraphically-equivalent, and younger,
reservoirs is likely to be controlled largely by pressure gradients
and episodic breakout, either along major faults, which would act
as pressure release valves (Sibson 1992), or through ruptured
seals when formation pressures exceed the fracture pressure of
the seal. Significantdiscoveries to date in the Eastern Mobile Belt
have been associated with reverse faults (Figure 11).

In the Norwegian Central Graben the largest hydrocarbon
accumulations are found in the first reservoir overlying or
updip of the transition zone between the second and third
pressure compartments in the basin (Leonard 1993). Similarly,
in the Tertiary sands of the Louisiana Gulf Coast (Leach 1994)

the major oil reserves are in reservoirs overlying the pressure
seal, while gas reserves are symmetrically distributed around
the pressure transition. A similar distribution of in place
volumes is evident in the Eastern Mobile Belt of Taranaki
Basin (Figure 14), suggesting oil pools accumulate in reservoirs
above the seal as the result of episodic charge.

Conclusions

Geochemical data from Waihapa-1 indicate that the Eocene
coal measures of the Mangahewa Formation are actively
generating oil and gas at Waihapa and are the source of the oil
found in the Tikorangi limestone reservoir. Coals are richer in
TOC, have higher generative potential and are more liquids-
prone than shales. Data from Waihapa indicate that the onset
of generation and expulsion occurs rapidly at thermal maturity
levels equivalent to vitrinite reflectance of 0.75-0.8%:
Waihapa-1A penetrated the entire oil window and tested in
situ gas from within the gas window, in the Kaimiro Formation.

The source sequences lie within regionally continuous,
stacked overpressured compartments, which develop when
the rate of pressure generation exceeds the rate of diffusion
through seals. The coincidence of overpressured areas and
active hydrocarbon generation strongly suggests that generation
is the main cause of overpressuring; the top of the overpressured
cells have been uplifted, and in places breached, in onshore
areas as the result of recent tectonic uplift.

Migration of hydrocarbons from the source units within the
overpressured compartments into overlying reservoirs is likely to
be an episodic process and to occur via faults and fractured seals.

Integrated analysis of pressure data and wireline logs
provide ameans of identifying preferential migration pathways
and discriminating oil and gas prospects in exploration.
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